If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5r^2-6r-18=0
a = 5; b = -6; c = -18;
Δ = b2-4ac
Δ = -62-4·5·(-18)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{11}}{2*5}=\frac{6-6\sqrt{11}}{10} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{11}}{2*5}=\frac{6+6\sqrt{11}}{10} $
| 1/2+4x=5/6-5x= | | 5(x-6)=3x+48 | | 44+4y=32 | | 12u^2+7u-12=0 | | C(q)=20q^2-13q+6 | | 14x^2+14x-3=0 | | 3w−2=7 | | (2/3)=(4/5)x-(1/3) | | 4x+63=50 | | (2/3)=(4/5)x-1/3 | | -12 = r3+ -9 | | 2x^2-11x=60 | | 2h−1=1 | | 21+2y=18 | | 2x+x-4x=6 | | ((w-5)/(4))+((w-2)/5))=5/4 | | 5x+-7+3x=25 | | 32•46=y | | 3-6/x=5 | | (2/3)=4/5x-1/3 | | 2(2t+5)=14 | | 116-x=90 | | 56.6=8.7x÷8 | | 116+x=90 | | -7x+37=4x-6/2 | | 116-x=180 | | 10-3x=5x-14 | | 116=180x | | 116=90x | | 24/18=n/6 | | 26-8x=12+6x | | 8x-24=3x+2 |